Analytic Continuation and Semiclassical Resolvent Estimates on Asymptotically Hyperbolic Spaces

نویسندگان

  • RICHARD MELROSE
  • ANTÔNIO SÁ BARRETO
چکیده

In this paper we construct a parametrix for the high-energy asymptotics of the analytic continuation of the resolvent on a Riemannian manifold which is a small perturbation of the Poincaré metric on hyperbolic space. As a result, we obtain non-trapping high energy estimates for this analytic continuation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytic Continuation and High Energy Estimates for the Resolvent of the Laplacian on Forms on Asymptotically Hyperbolic Spaces

We prove the analytic continuation of the resolvent of the Laplacian on asymptotically hyperbolic spaces on differential forms, including high energy estimates in strips. This is achieved by placing the spectral family of the Laplacian within the framework developed, and applied to scalar problems, by the author recently, roughly by extending the problem across the boundary of the compactificat...

متن کامل

Microlocal analysis of asymptotically hyperbolic spaces and high-energy resolvent estimates

In this paper we describe a new method for analyzing the Laplacian on asymptotically hyperbolic spaces, which was introduced by the author in 2010. This new method in particular constructs the analytic continuation of the resolvent for even metrics (in the sense of Guillarmou), and gives high-energy estimates in strips. The key idea is an extension across the boundary for a problem obtained fro...

متن کامل

Microlocal Analysis of Asymptotically Hyperbolic and Kerr-de Sitter Spaces

In this paper we develop a general, systematic, microlocal framework for the Fredholm analysis of non-elliptic problems, including high energy (or semiclassical) estimates, which is stable under perturbations. This framework, described in Section 2, resides on a compact manifold without boundary, hence in the standard setting of microlocal analysis. Many natural applications arise in the settin...

متن کامل

Non-trapping Estimates near Normally Hyperbolic Trapping

In this paper we prove semiclassical resolvent estimates for operators with normally hyperbolic trapping which are lossless relative to nontrapping estimates but take place in weaker function spaces. In particular, we obtain non-trapping estimates in standard L2 spaces for the resolvent sandwiched between operators which localize away from the trapped set Γ in a rather weak sense, namely whose ...

متن کامل

Mathematical Theory of Resonances

The resonance counting function for Schrödinger operators HV = −∆ + V on L(R), for d ≥ 1, with compactly-supported, realor complex-valued potentials V is known to be bounded above by CV (r +1). The main result is that for a dense Gδ-set of such potentials, the resonance counting functions have the maximal order of growth d. For the even dimensional case, it is shown that the resonance counting ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011